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The publication of a theoretical analysis of the response of a simple straight-tube Coriolis meter
to #ow pulsations raised the question of the extent to which the results of that analysis are
generic over the wide range of geometric con"gurations used in commercially available meters.
A procedure for using a general purpose "nite element (FE) code to investigate this question is
presented. The dual time scales, which are an essential feature of pulsating #ow through
a Coriolis meter, are used to minimize the amount of computation required to simulate the
meter response. The FE model is developed in a full 3-D form with shear de#ection and axial
forces, and the computation of the simulated response for the geometrically most complex
meter currently available shows that this level of representation is necessary to reveal the full
details of the response. The response derived from the FE simulation for straight-tube meters, is
compared with the published theoretical response and to experimental data. Over a range of
di!erent meters, the characteristics of the sensor signals in the presence of #ow pulsations are
shown to be generally similar. In all cases, the simulated sensor signals contain components
corresponding to beating between the pulsation frequency and the meter drive frequency, in
addition to the main component at the drive frequency. Spectra are computed from the
simulated meter responses and these are used to show that the relationship between the mass
#ow rate and the phase di!erence between the component of the sensor signals at the drive
frequency, is not signi"cantly a!ected by the pulsations. Thus, the work suggests that the
reports of changes in meter calibration due to certain frequencies of #ow pulsation represent
errors in signal processing rather than fundamental changes in the meter characteristics.
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1. INTRODUCTION

DUE TO THEIR HIGH ACCURACY (typical uncertainty for liquids (0)1% full scale) and wide
applicability, Coriolis mass #ow meters have become widely used in industry. They measure
the mass #ow by vibrating a #uid conveying tube at a resonant frequency (commonly, but
not always, the lowest mode frequency). As the tube oscillates, directional changes in the
moving #uid are induced and, as a result, Coriolis forces are developed. The e!ect of these
forces on the #ow tube produces a distortion of the driven motion. The distortion has the
shape of a higher vibration mode but it occurs at the drive frequency. The resonant
frequency corresponding to the distortion mode shape is called the Coriolis frequency.
Meters typically have two displacement detectors mounted at di!erent points along the
#ow tube, and the e!ect of the distortion is to produce a phase shift between the signals from
the two detectors, which, for steady #ow, is linearly proportional to the mass #ow rate.

Coriolis meters may have a single tube or a balanced pair of tubes and the tubes may be
straight or of quite complex shapes; a good overview of the possibilities is given in the
0889}9746/00/070613#22 $35.00/0 ( 2000 Academic Press
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survey paper by Baker (1994). The driven motion is usually designed to be of constant
amplitude, using feedback from one or both of the displacement detectors. The exact nature
of the feedback, as well as the method used to determine the phase di!erence (and hence
the mass #ow rate) from the detector signals, vary from one manufacturer to another and
were not available to the authors. For a steady #uid #ow the signals from the detectors will
contain only one signi"cant frequency component, since both the driven motion and the
Coriolis distortion are at the same frequency. Thus, there is no inherent di$culty in the
determination of the phase di!erence between the signals. However, if a pulsatile compon-
ent in the #ow introduces signi"cant additional components in the tube motion and hence
in the detector signals, at frequencies other than the drive frequency, then at least two
important questions are raised. Firstly, do these additional components change the linear
relationship between the phase di!erence of the components at the drive frequency and the
mass #ow rate? Secondly, how well do meters handle detector signals with multiple
frequency components? Details of the di!erent algorithms used by the various manufac-
turers to extract the phase di!erence between the sensor signals were not available to the
authors, and so this second question could only be examined experimentally. Results of
a parallel experimental study have been reported by Cheesewright, Clarke and Bisset (1999).
The present work is part of an attempt to answer the "rst question and at the same time to
predict the characteristics of the additional components of tube motion.

There have been only two signi"cant publications dealing with the e!ect of #ow pulsa-
tions on Coriolis meters. Vetter and Notzon (1994) reported the results of experiments
involving two di!erent U-tube meters subjected to pulsations from a piston pulsator and
from a gear pump. They reported irregular meter output signals with pulsations at the drive
frequency and large meter errors with pulsations at the Coriolis frequency. Cheesewright
and Clark (1998) reported the results of an analytical solution to the problem, for a simple
straight tube meter. This analysis suggested that, in the presence of #ow pulsations,
the detector signals could contain components at four di!erent frequencies, namely, the
drive frequency, the Coriolis frequency and frequencies corresponding to the sum and
di!erence of the drive frequency and the pulsation frequency. However, this work also
suggested that the relationship between the component of the detector signals at the drive
frequency, and the mass #ow rate through the meter, was not a!ected by the pulsations. The
complexity of the analysis reported by these authors is such that an extension of the work to
include the more complex geometries, typical of current, commercially available meters,
would be very di$cult or even impossible.

2. FINITE ELEMENT SOLUTIONS

It would, at least in principle, be possible to solve the problem by fully coupling FE
solutions for the #uid #ow within the meter tube and for the tube structure. An example of
the application of this approach, to the relatively simple problem of the dynamic response of
an initially straight but #exible pipe conveying a #uid, has been reported by Olson
& Jamison (1997), but the extension of this approach to complex three-dimensional
geometries would be unrealistically demanding of computing time. PamKdoussis & Li (1993)
and Tijsseling (1996) have published reviews of work on #uid}structure interactions,
including both the development of special (FSI) codes and the use of existing commercial
FE codes.

For cases where only the structural response of the tube to the #ow body forces is of
interest (i.e. detailed behaviour of the #ow is of no interest), a simpli"ed alternative
approach can be adopted. In this approach the tube is idealized by using simple beam
elements loaded both by structural forces (applied, inertia, sti!ness and damping) and by
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#uid forces (inertia, centripetal and Coriolis). Commercially available Coriolis meter
tubes are made up of straight sections of tube joined by curved sections (see Figure 4)
so that ideally, curved beam elements should be used, with each element being characterized
by a radius of curvature. However, examination of the equations for a curved beam element,
as derived, for example, by Sultan and Hemp (1989), shows that when a curved beam
element is approximated by a large number of short straight elements, the accuracy with
which the #uid/tube interaction is modelled increases rapidly as the number of straight
elements is increased. There are small residual errors in the modelling of the forces on the
tube, but these errors predominantly involve &&in-plane'' forces, and both the driven motion
of the meter tubes and the additional motions that are the subject of this work are
&&out-of-plane''. The concentration on &&out-of-plane'' motions also allows the neglect of
any consideration of the extension of the tube centreline [see Misra, PamKdoussis & Van
(1988a, b)].

On the basis of the above factors it was decided to follow the work of Stack, Garnett and
Pawlas (1993) and model the meters in terms of straight beam elements. This allowed the
equations governing the motion of a tube element (and the enclosed #uid) to be derived and
an appropriate FE code used to solve these equations for the ensemble of elements
comprising the meter. This approach kept the amount of computation within reasonable
bounds, while achieving the objective in the present work, which was to predict the
structural dynamic response of the meter tubes (and hence the characteristics of the signals
from the displacement sensors).

There have been several reports of the application of this approach to problems involv-
}ing steady -ow through a Coriolis meter. Stack et al. (1993) used a simpli"ed Timoshenko
beam representation of the tube element, and Hulbert, Darnell and Brereton (1995)
extended the work to include the e!ects of axial tension. For these steady #ow problems
the governing equations are of complex eigenvalue form and general purpose FE codes
are available to solve such problems. Both these publications reported comparisons
of predicted drive frequencies (including the small #ow rate dependence) and meter calib-
ration factors, with those obtained by experiment for commercially available meters. In
both cases, the agreement was within 5%, with the latter paper reporting slightly better
agreement.

The present work di!ers from these previous studies, because the presence of the #ow
pulsations changes the governing equations from a complex eigenvalue form to a form in
which the spatial and temporal variables are not separable. This can easily be deduced from
the presence of two, independent, externally imposed time scales, namely the drive fre-
quency and the pulsation frequency. A consequence of this di!erence is that an FE solution
must either take a dynamic form, stepping forward in time until an asymptotic, fully
developed motion is reached, with the sensor signal characteristics determined from
temporal averages (at that condition), or the solution must be developed via a modal
decomposition along similar lines to those used by Cheesewright and Clark (1998). It is not
obvious, however, that the latter approach can be easily integrated with the applicability to
complex geometries which characterizes modern general purpose FE codes. It was therefore
decided to adopt the dynamic FE calculation approach.

Although in general the spatial and temporal variables are not separable, if the time step
associated with the dynamic FE calculation is much smaller than either the time scale of the
highest structural vibration mode of interest or that of the #uid pulsations, separability can
be assumed for each time step. This, as will be demonstrated in Section 3, leads to
a formulation of the equations for an FE solution, which are of a &&standard'' form except
that the sti!ness and damping matrices are time dependent. It would be possible to develop
a program which evaluated these matrices at every (FE) time step. An FE solution set up in
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this way would still involve a very large computational e!ort, and so a further approxima-
tion was introduced, which took advantage of the two time scales noted above and of
a feature of the ANSYS FE code. The matrices were only updated at intervals, which gave
an adequate representation of the pulsation waveform, and were kept constant during
the large number of FE time steps which occurred during these intervals. Furthermore, the
di!ering matrices were introduced via the &&births and deaths of elements'' feature of the
code so that they only needed to be evaluated for one cycle of the pulsation, even though
the dynamic FE calculation had to be extended over a large number of such cycles to reach
the asymptotic state.

The approximations noted above made it desirable that the FE treatment should be
validated and this was achieved by comparison with the solutions published by Cheesew-
right and Clark (1998) for a simple straight tube meter. However, the overall objective of the
present FE work was to develop a technique which was economical with respect to
computer time and which could be relatively easily applied to any of the commercially
available Coriolis meters. As will be demonstrated in Section 5, although the drive is always
in one plane, for some of the meters the geometry is so complex that a full three-dimensional
analysis is necessary to give an adequate representation. Thus, the development of the FE
equations was performed for the three-dimensional case, using Timoshenko beam elements
without any simpli"cations.

3. GENERAL FINITE ELEMENT EQUATIONS OF MOTION

The FE solution adopted to analyse the dynamic behaviour of Coriolis meters is based
on a pure structural engineering approach. Thus, conceptually, the e!ect of the pulsating
#ow on the vibrating tube is seen as similar to the e!ect of a vehicle moving with
variable speed on a bridge. In the formulation of the #uid-conveying beam element the
#uid #ow is assumed to be approximated as a plug #ow. The wavelength of the #ow
pulsation is assumed to be large compared with the meter length. Thus, the #uid is
treated as a solid mass travelling along the tube at a uniform but time-varying speed.
Also, the #uid and the tube are assumed to be perfectly coupled by having equal
displacements and rotations. The assumption of equal rotations of the tube and the
#uid is an approximation, since the true rotation of the #uid will be somewhere between
zero (inviscid #uid) and that of the tube. The error introduced by this approximation
will be small because the rotational inertia of the #uid is never more than 25% of that of
the tube.

The meter is considered to be made up of straight #uid-tube "nite elements having length
¸ and six degrees of freedom per node (three translations and three rotations). The
distributed mass of #uid moves continuously without separating from the tube element, and
travels at time-varying velocity <"<(t). A Timoshenko beam formulation is adopted for
the element. This takes into account e!ects of shear and rotary inertia in the transverse
de#ection of the tube element. Thus, the equations expressing the transverse displacement u,
the #exural rotation h and the shear strain /, in the Mx, yN plane, in terms of the distance
along the tube x and the time t, together with the material properties of the tube and the
#uid, can be obtained by recasting the analysis for a time-dependent #ow reported by
PamKdoussis & Issid (1974), into the form used by Stack, et al. (1993). The resulting equations
are:
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It should be noted that the derivation of equations (1) di!ers from the derivation of the
equivalent equation given by Cheesewright and Clark (1998) in that it includes the e!ects of
axial tensions, even though the tension does not appear explicitly in the equations [the
tension has been eliminated by substitution from a force/momentum balance in the
x-direction; see PamKdoussis (1998) for details]. Closely similar equations can be written for
the lateral displacement, the #exural rotation and the shear strain in the Mx, zN plane.

By assuming that, over a short period of time (as indicated in Section 2) the space and
time variables are separable, the FE development described, for example, by Stack et al.
(1993) can be applied to these equations as described brie#y in Appendix A. This leads to
a standard matrix form of the dynamic equation of motion which can be written as

M
d2q

dt2
#B

dq

dt
#Kq"0, (2)

where q is the vector of nodal displacements and rotations, and M, B and K are the element
matrices (given in detail in Appendix A). The element sti!ness and damping matrices K and
B, contain terms depending on the #ow velocity <"<

0
(1#a sinu

p
t ) and on d</dt), and

are thus time-dependent.
FE codes are designed to solve systems of equations like equation (2) above, with one

equation for each of the relevant planes. Alternatively the equations for the Mx, yN and Mx, zN
planes can be combined with a simple axial tension/axial displacement equation for the
My, zN plane to give a single 3-D matrix equation and, as indicated in Appendix A, this was
the route taken in the present work. For constant element matrices the solution will yield
resonant frequencies and the associated distributions of displacements and rotations over
the whole structure. When the element matrices are time-dependent, only a transient
solution is possible, starting from an initial distribution of displacements and rotations and
tracing out the changes of these distributions with time. The time step, which can be used in
a transient solution, is dictated by the highest frequency component which it is desired to
resolve. As pointed out in Section 2, the evaluation of the time-dependent element matrices
at every time step would involve an excessively large amount of computation. In order to
avoid this unnecessary computational overhead, it was established by preliminary compu-
tations that 16 time steps were su$cient to establish the characteristics of the pulsation
cycle, so that the time-dependent matrices only needed to be computed 16 times and could
then be repeated for successive pulsation cycles. The computational time scale was chosen
to be 41/[20( f

1
#f

p
)] and "1/[16n f

p
], where f

1
is the meter drive frequency, f

p
is

the #ow pulsation frequency, and n is an integer, thus giving at least 20 time steps over the
period of the highest frequency of interest. A representation of this dual time step procedure
is shown in Figure 1.

4. SOLUTION USING ANSYS

4.1. IMPLEMENTATION OF THE SOLUTION

The FE code which was available for this work was ANSYS. While it would have been
possible to have incorporated the problem speci"cation (for a range of very di!erent meter
geometries), and the dual time step concept described above, by programming around the



Figure 1. Illustration of the two di!erent time steps used in the solution.
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basic core of the code, it proved to be more e$cient to utilize the following special features
of the code:

(i) the Matrix27 element, which represents an arbitrary (12]12) 3-D element whose
geometry is unde"ned but whose elastic kinematic response can be speci"ed by sti!ness,
damping or mass coe$cients, allowed the matrix elements given in Appendix A to be read
into ANSYS;

(ii) the element &&birth and death'' feature, which provides a simple method to activate
and de-activate selected elements in the FE model, allowed the 16 steps of the pulsation
cycle to be set up as parallel elements and switched in and out as the cycle proceeded;

(iii) the parametric design language feature of ANSYS allowed the above procedures to
be implemented very simply via an input "le which could be used repeatedly.

In the form in which the element &&birth and death'' feature is implemented in ANSYS, it
causes an element which is activated (or re-activated) to go immediately from the unstressed
state to the fully stressed state; this introduced undesirable transients in the solution. This
problem was overcome by dividing the element matrices into a time-independent (steady)
part and a time-dependent part, having 17 elements in parallel: one, which was always
active, containing the steady part, and the other 16, which were switched in and out in turn
and which contained the time-dependent parts appropriate to the particular point in the
pulsation cycle. In order to avoid elements with a negative sti!ness matrix it was necessary
to retain a small part of the steady-state matrices in the time-dependent elements. Figure 2
shows a diagrammatic representation of the switching process.

In setting up the details of the input of the element matrices it was necessary to decide on
the approximation to be used with regard to the d</dt terms which appear in the sti!ness



Figure 2. Representation of the coordinate system and the switching process using parallel elements. M
0
, B
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and K
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are the constant element matrices for a tube conveying steady #ow at (mean) velocity, <"<
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are the time-dependent element matrices resulting from time dependent velocity component; n (1 to 16)
indicates the position in the pulsation velocity cycle.
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matrix (see Appendix A). Initial solutions were performed with these terms set to zero, but
later they were evaluated as the mean temporal gradient over the appropriate pulsation
time step. For geometrically simple meters no di!erences could be detected between the two
solutions, but for the more complex meters there were small di!erences.

4.2. INITIAL CONDITIONS

The theoretical solutions reported by Cheesewright and Clark (1998) assumed that the
meter was being driven with zero #ow and then the #ow (either steady or pulsating) was
suddenly started. This would not have been easy to implement in the FE solution, so it was
decided to start the transient solutions from a condition corresponding to steady #ow (at
a velocity corresponding to the mean velocity of the pulsating #ow). Unfortunately, the
ANSYS code available for this work did not contain a complex eigenvalue solver, which
could accommodate the type of elements used in this work. Thus, it was necessary to start
from an eigenvalue solution in which the #uid velocity terms were retained in the sti!ness
matrix but the damping matrix was assumed to be zero. This solution gave the &&correct''
modal frequencies for the chosen #ow rate, i.e. it included the very small #ow-rate
dependence of the modal frequencies which has been demonstrated by Cheesewright and
Clark (1998), Stack, et al. (1993) and others. It did not however, include the asymmetries
associated with the Coriolis forces. When the distribution of tube displacements corre-
sponding to the driven mode of the meter were taken from the eigenvalue solution and used
to start a transient solution, it was found that the imperfections in these starting conditions
introduced additional frequency components in the computed motion. These additional
frequency components decayed as the transient solution proceeded, and a very long run
con"rmed that they were a result of the starting conditions and that they disappeared after
a su$ciently long time.

The computations were performed on a dual Pentium Pro machine with 256 MB of
memory, under the Windows NT4 operating system, and the run times were of the order of
days, particularly for the geometrically more complex meters. In order to reduce the



Figure 3. Spectrum of simulated sensor signal for steady #ow (with drive removed): (a) during initial transient;
(b) for steady state.
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computational overhead of the imperfect initial conditions, the main computations were
performed in two parts. First a relatively long run was made with a high numerical damping
(10 times the default ANSYS value) to eliminate the spurious frequency components, and
then the output of that run was used to start a run using the default value of the numerical
damping. Figure 3(a) shows a spectrum of the tube displacements (at a sensor position)
derived from the solution near the beginning of the highly damped part of the solution, and
Figure 3(b) shows the corresponding spectrum derived from the subsequent run, with
default damping. These spectra were taken from a solution for steady #ow through a simple,
straight-tube meter, and additional peaks on the spectrum from the early stages of the
solution correspond to the Coriolis frequency and the "rst modal frequency of a tube of
length ¸/2 (the half-beam frequency). The presence of the spectral peak at the Coriolis
frequency corresponds to the term at this frequency predicted by Cheesewright and Clark
(1998), arising from initial conditions. Because the term arises from initial conditions and
there is no subsequent energy input to it, the term will decay under the in#uence of
damping, so that the spectrum from the subsequent run shows only the drive frequency.
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Because of the necessity of having a minimum level of numerical damping (the default
damping), any transient solution would show a decay with time if the motion was not
driven. Commercially available meters are driven by a feedback system, based on one or
both of the sensor signals, and designed to keep the amplitude of the driven motion
constant. It was not possible to directly simulate this drive because the feedback system
di!ers from one manufacturer to another and details of the systems were not available to the
authors. The FE computations were driven by requiring that the motion of the central node
was of the form ;

d
";

0
cos(c

1
t), where ;

0
was taken as 0)2 mm. It was appreciated that

this form of drive will tend to reduce the occurrence of third or higher odd modes in the
computed motion, but such a constraint is in keeping with the predictions of Cheesewright
and Clark (1998).

4.3. PRESENTATION OF RESULTS

The Introduction identi"ed two objectives for this work which were the determination of
any additional components in the motion of the sensors due to #ow pulsations and the
examination of the question as to whether the #ow pulsations change the linear dependence
of the phase di!erence between the component of the sensor signals at the drive frequency
and the mass #ow rate. In order to answer the "rst question, the solution is used to create
a digital time history of the displacement of a sensor and then the periodogram technique
(Bendat & Piersol 1971) is used to generate a spectrum from this time history. Relevant
additional components of motion may be as small as the Coriolis component and hence
may be of the order of 10~3 times the component at the drive frequency. In order to
emphasize the presence of the additional components, the majority of the spectra are
presented in terms of the spectrum of the di!erence between the time history for the
pulsating #ow and the time history for a steady #ow with the same mean velocity. This
representation is only possible because the two time histories are derived from computa-
tions which start from the same point in time, run for exactly the same length of time, and
are driven at the same frequency and amplitude.

Ideally, the answer to the second question would have involved the application of
a digital bandpass "lter, centred on the drive frequency ( f

1
), to the time histories of the

computed sensor motions and then the determination of the phase (or time) di!erence
between the two "ltered signals. In practice, it proved to be impractical to generate
su$ciently long computed records of the sensor motions to yield accurate "ltered signals.
However, the absence of a peak at the drive frequency ( f

1
) in the spectrum of the di!erence

between the time histories for a pulsating #ow and the corresponding steady #ow is an
equally good proof that the dependence of the phase di!erence between (i) the components
of the sensor signals at the drive frequency and (ii) the mass #ow rate is independent of the
presence of #ow pulsations.

In a simulation of the signal processing used in some earlier commercial meters, the time
di!erence between the two sensor signals was calculated for each pair of zero crossings of
the computed signals, with the exact positions of the zero crossings being established by
interpolation. These time di!erences were averaged over an integer number of cycles of the
drive signal (two estimates per cycle). Typically, the &&steady-state'' part of the computation
was run for more than 25 cycles of the drive, and so the time di!erences were the result of
averages over 50 estimates.

5. ILLUSTRATIVE CASES

Computations have been performed for four di!erent 25 mm (nominal) Coriolis #ow
meters, three commercially available meters and a simple straight-tube meter, with tube



Figure 4. Diagramatic representation of meters models used in computations: (a) straight-tube meter; (b)
U-tube meter; (c) )-tube meter; (d) B-tube meter.
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dimensions based on a commercially available straight meter. The commercial meters
comprised: a U-shape dual-tube meter (meter U), a &&coat-hanger'' shape dual-tube meter
(meter )) and a B-shape dual-tube meter (meter B). Diagrammatic representations of the
meters are shown in Figure 4. The FE representations of the meters were based on
dimensions and material properties supplied by the manufacturers, but it should be noted
that the FE models do not attempt to represent the additional components attached to the
measurement tubes of the commercial meters for the purpose of enhancing their dynamic
performance. These are therefore, considerably simpli"ed models. In all the computations
the #uid was assumed to be water at ambient temperature.

5.1. STRAIGHT-TUBE METER

The straight-tube meter was modelled in terms of 29 nodes, it had both ends "xed and was
driven at the middle node, see Figure 4. A mean velocity of 6 m/s (mass #ow rate 2)6 kg/s)
through the meter tube was assumed and a pulsation factor a"0)1 was used in the
pulsating #ow analyses. The natural frequencies of this meter model were f

1
"143)452 Hz

and f
2
"395)0 Hz; this value of f

1
can be compared with that for the no-#ow case

f
1,0

"143)484 Hz. The di!erence between f
1

and f
1,0

agrees with that given by the analysis
of Cheesewright and Clark (1998) (C&C). For steady #ow, the FE analysis yields a mean
time di!erence between the sensor signals of 9)085 ls as compared with the 8)662 ls given



Figure 5. Spectra of simulated sensor signal (drive and Coriolis motions removed): (a) for pulsations at
the Coriolis frequency, f

2
; (b) for pulsations at di!erence between the Coriolis frequency and the drive frequency,

f
2
!f

1
(simple straight-tube meter). Note the di!ering scales of the ordinates of the two graphs.
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by the equation derived by C&C. However, when the FE model was amended to agree more
closely with that used by C&C, i.e. Bernoulli beam element, with no axial stresses, etc., the
predicted time di!erence was 8)576 ls, which is in acceptable agreement with the C&C
result. The retention of the more complex model in the following FE work, rather than the
simpler model used by C&C, is justi"ed on the grounds that it is more realistic, as has been
noted by Hulbert, Darnell and Brereton (1995), and the di!erence is likely to be signi"cant
in the geometrically more complex meters.

The e!ect of #ow pulsations is illustrated in Figure 5, where (a) shows the in#uence of
pulsations at the Coriolis frequency, f

2
, and (b) shows the in#uence of pulsations at f

2
!f

1
.

In both cases, the quantity plotted is the spectrum of the di!erence between the time
histories of sensor displacements for #ow with and without pulsations (note the di!ering
scales of the ordinates on the two graphs). The peaks in Figure 5(a) are at f

2
!f

1
and f

2
#f

1
,

while those in Figure 5(b) are at ( f
2
!f

1
)!f

1
"f

2
!2 f

1
and ( f

2
!f

1
)#f

1
"f

2
, with the

former of these being only just visible. These peaks are consistent with pulsations having
e!ects at frequencies corresponding to the beat frequencies between pulsation and drive, as
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predicted by C&C; and the fact that the peak at f
2

in Figure 5(b) is signi"cantly larger than
any of the other peaks is consistent with this being the only peak which is at a system
resonant frequency. The absence of spectral peaks at f

1
in Figure 5(a, b) shows that the #ow

pulsations do not change the proportionality between the phase di!erence of the compo-
nents of the sensor signals at f

1
and the mass #ow rate. The estimate of the time delay

between the two sensor signals for the #ow pulsating at f
2

was 9)098 ls, and the di!erence
between this value and the value given above for steady #ow (9)084 ls) is less than the
uncertainty of the estimates.

The above FE results can be compared with the results from experiments on a commer-
cial straight-tube meter. The two meters are not identical because, although the commercial
meter has a straight tube, it is far from simple, and data were not available to model its more
complex features. For the same #ow rate as used in the model, the commercial meter has
a drive frequency of 222 Hz and a Coriolis frequency of 427 Hz. Because of the di!erences,
a direct comparison between the relative amplitudes of FE displacement spectrum and the
experimental spectrum was not possible. Hence, the comparison between FE and experi-
mental results is limited to a qualitative examination of the frequency content of the spectra.

Figure 6 shows the power spectrum of a sensor signal from the commercial meter for
a #ow pulsating at f

2
, the corresponding steady #ow spectrum, and the di!erence between

the two spectra. Figure 7 shows the corresponding data for a #ow pulsating at f
2
!f

1
. The

spectral curves were developed by the periodogram technique using 1)3 s segments (with
50% overlap) from a 4)7 s sensor signal time history. The spectral amplitudes are given in dB
relative to the r.m.s. signal voltage. It should be noted that it was not feasible to subtract the
time histories of the sensor signals and then derive a spectrum, because the time histories for
steady #ow and for pulsating #ow could not be aligned in time as they could for the
Figure 6. Power spectra of experimental detector signals for pulsations at Coriolis frequency f
2
, steady #ow,

and the di!erence between the two spectra (commercial straight-tube meter).



Figure 7. Power spectra of experimental detector signals for pulsations at the di!erence between the Coriolis
frequency and the drive frequency f

2
!f

1
, steady #ow, and the di!erence between the two spectra (commercial

straight-tube meter).
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computed time histories. While Figure 6 shows the spectral peaks at f
2
!f

1
("205 Hz) and

f
2
#f

1
("649 Hz) which appear in Figure 5(a), there is also a signi"cant peak at f

2
and

peaks at 2 f
2
, 2 f

1
#f

2
and &140 Hz, which do not appear in Figure 5(a). Cheesewright et al.

(1999) have recently published convincing evidence that the f
2

peak is due to internal
vibrations of the meter, excited by the #ow pulsations (a feature which this FE analysis
would not be expected to model). The other peaks are most probably due to the more
complex features of the meter which were not modelled in the FE analysis.

In the case of a #ow pulsating at f
2
!f

1
(Figure 7), the frequency component at

f
2
!f

1
#f

1
"f

2
"427 Hz is slightly enhanced, there is a signi"cant peak at the pulsation

frequency (205 Hz) and also at twice the pulsation frequency (410 Hz). The frequency peak
corresponding to f

2
!f

1
!f

1
"17 Hz is not visible, because of its low amplitude (it is not

a resonant frequency) and the presence of noise in the signal spectrum. This agrees well with
the FE prediction which shows that the amplitude of the component at frequency
f
2
!f

1
!f

1
"f

2
!2 f

1
"108 Hz was very small. The signi"cantly smaller amplitude of the

peak at f
2
in this case (Figure 7) is worth noting, compared with the previous case (Figure 6),

which suggests that the vibration e!ect due to pulsations could be more important than the
direct pulsation e!ect on meter performance.

5.2. COMPLEX GEOMETRY METERS

To show the application of the FE procedure to meters with more complex geometries,
three illustrative examples are presented in what follows. A range of di!erent pulsation
frequencies were studied, but, for comparison, it is convenient to concentrate on the case of
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the #ow pulsation frequency equal to the meter Coriolis frequency f
2
, for all three meters. As

shown in Figure 4, since all three meters were of the dual tube type, each model was "xed at
its ends and was driven at the middle nodes of the two tubes by imposing harmonic
displacements having equal amplitudes (0)2 mm) but in anti-phase with each other. The
U-tube and the )-tube meters were driven in the simple "rst mode (bending with no
twisting, about the z-axis for the U-meter and the x-axis for the )-meter), whereas the
B-tube was driven at a higher mode (as in the commercial meter), such that the drive and the
sensor move in anti-phase with a vibrational node roughly halfway between the driver and
each sensor (bending about the x-axis and twisting about the y-axis). A #ow pulsation factor
a of 0)25 was used for all three meters. Although all three meters were nominally 25 mm in
diameter (i.e. they were intended for use in 25 mm diameter pipe systems) the actual #ow
tubes varied considerably in diameter. The mean #ow velocities in each of the two tubes for
the di!erent meters were calculated from the cross-sectional areas for a #ow rate of 2 kg/s
(the #ow rate used in the majority of the experiments). This resulted in #ow velocities of 7)1,
4)7 and 3)6 m/s, for the U-tube, the )-tube and the B-tube, respectively.

The values of the drive and Coriolis frequencies given by the modal analyses of the three
meters are reported in Table 1. The presence of two Coriolis frequencies for the B-tube
meter results from it being driven at a higher mode (Raszillier & Durst 1991).

Figure 8 (for the U-meter), Figure 9 (for the )-meter) and Figure 10 (for the B-meter)
show the spectra of the di!erences between the time histories of displacements at the sensor
nodes, with and without #ow pulsations, obtained from the analyses of the three meter
models. As can be seen, in the case of the U-meter and the )-meter, the sensor displacements
Figure 8. U-tube meter: spectrum of di!erence between simulated sensor signal with pulsations at the Coriolis
frequency, f

2
, and the corresponding signal for steady #ow.

TABLE 1

Predicted characteristic frequencies for the U, ) and B meters

Meter Drive frequency/(Hz) Coriolis frequency/(Hz)
(upper)

Lower Coriolis frequency/(Hz)

U-meter 78)9 205)0 *

)-meter 105)5 178)0 *

B-meter 110)5 186)7 52)8



Figure 9. )-tube meter: spectrum of di!erence between simulated sensor signal with pulsations at the Coriolis
frequency, f

2
, and the corresponding signal for steady #ow.

Figure 10. B-tube meter: spectrum of di!erence between simulated sensor signal with pulsations at the Coriolis
frequency, f

2
, and the corresponding signal for steady #ow.
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contain contributions from three frequencies, namely: the Coriolis frequency f
2

and the two
frequencies corresponding to the sum of and the di!erence between the pulsation frequency
( f

2
) and the drive frequency, i.e. ( f

2
#f

1
) and ( f

2
!f

1
), respectively. The small spectral

peaks at f
2

are due to initial conditions and would disappear if the FE calculations were run
for a longer time. In the case of the B-meter, the spectrum is more complicated; there is no
signi"cant peak at f

2
, but there are three additional peaks: at frequencies f

0
, f

1
and f

2
/2,

where f
0

is the lower Coriolis frequency.
The FE calculations of the response of the B-meter to #ow pulsations were constrained

by the limitations of computer power, with each simulation taking "ve to six days to
complete. It was thus not clear whether these additional peaks were due to the incomplete
damping out of initial conditions, or to the geometrical complexity of the B-meter, or to the
fact that it is driven in a higher mode, or to a combination of these factors. In an attempt to
establish this dependence, a computation was performed with the B-meter driven in its
fundamental mode. Figure 11 shows the equivalent of Figure 10 for this case, and it must be



Figure 11. B-tube meter, driven in fundamental mode: spectrum of di!erence between simulated sensor signal
with pulsations at the Coriolis frequency, f

2
and the corresponding signal for steady #ow.
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noted that the use of f
1

and f
2

to represent the drive frequency and the Coriolis frequency
respectively is retained so that the same symbol represents di!erent numerical values of the
frequency in the two "gures. As might be expected there is no equivalent of the f

0
peak in

Figure 11, because there is no lower Coriolis frequency. There were indications that the
relatively large f

2
peak in Figure 11 is due to the much slower decay of initial transients at

these low (numerical) frequencies and it is expected that it would disappear after a su$-
ciently long computation. On the assumption that the f

2
peak in Figure 11 is due to

a transient e!ect, there is a clear suggestion that some of the spectral peaks in Figure 10
arise from the meter being driven in a higher mode. However, to establish the de"nitive
response of this complex meter would require the running of the FE model on a faster
computer system.

The absence of spectral peaks at f
1

in Figures 5(a, b), 8 and 9 shows that for the straight-
tube meter, the U-meter and the )-meter, #ow pulsations do not a!ect the linear relation-
ship between the mass #ow rate and the phase di!erence between the f

1
components of the

sensor signals. Although Figure 10 for the B-meter shows a small peak at f
1

(which would
suggest a change in meter calibration), the amplitude of that peak is approximately 0)05%
of the peak for steady #ow on which the meter calibration is based. Thus, in view of the
limitations reported above on the extent to which the computations for this meter are fully
converged, it must be concluded that, although pulsations may produce a change in the
calibration of this meter, the change is less than the uncertainty of the meter calibration
quoted by the manufacturer.

6. CONCLUSION

A procedure for modelling pulsating #ow in Coriolis mass #ow meters using a standard FE
code has been presented. In the form in which the procedure has been implemented, using
the ANSYS FE code, it is easily applicable to any meter geometry and to any meter drive
mode. The computations are minimized by using the di!erence between the two time scales
which control meter responses to pulsating #ows (drive frequency and pulsation frequency).

The procedure has been validated by comparison with the published analytical
solution for a simple straight-tube meter and a comparison with experimental data from
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a commercially available straight-tube meter provides a con"rmation of the essential
features of the computed response.

The procedure has been used to generate the responses of a range of geometrically
di!erent, commercially available, meters. These responses show that all meters, regardless of
geometry or drive mode, show responses which are characterized by signal components
which arise from beating between the pulsation frequency and the meter drive frequency.

The computed responses show that when the meter calibration is expressed in terms of
the relationship between the mass #ow rate and the phase di+erence between the components
of the sensor signals at the meter drive frequency, the calibration is not changed by the
presence of #ow pulsations. This result shows that the meter errors reported for the
measurement of #ows with pulsations at the Coriolis frequency of the meter are a result of
signal processing and not of the basic meter calibration.
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APPENDIX A: FINITE ELEMENT MATRICES

Assuming that, during each quasi-steady step, the x and t variables are separable, the
transverse displacement, #exural rotation and shear strain along the element in each of the
(2-D) planes Mx, yN and Mx, zN (see Figure 2), can be written in matrix form as (following the
procedure of Stack et al. 1993):

u%
(x, t)

"NT
u(x)

q
(t)
"A

1

1#gB

A
2

¸3Bx3!A
3

¸2Bx2!A
g

¸Bx#g#1

A
1

¸2Bx3!A
2#0.5g

¸ Bx2#(1#0)5g)x

A
!2

¸3 Bx3#A
3

¸2Bx2#A
g

¸Bx

A
1

¸2Bx3#A
!1#0)5g

¸ Bx2!0.5g

]q
(t)

,

h%
(x, t)

"NTh(x)q(t)"A
1

1#gB

A
6

¸3Bx2!A
6

¸2Bx

A
3

¸2Bx2!A
4#g

¸ Bx#1

A
!6

¸3 Bx2#A
6

¸2Bx

A
3

¸2Bx2#A
g!2

¸ Bx

]q
(t)

,

/%
(x, t)

"NT
((x)

q
(t)
"A

1

1#gB

!g

¸

!g

2

g

¸

!g

2

]q
(t)

, (A1)

where superscript e denotes an element vector, N represents the shape function matrix,
T denotes the transpose, q is the nodal displacements and rotations vector, and g is
a constant based on material and geometric properties of the meter tube
("12EI

p
/kGA

P
¸2). The shape functions, which are the same in each plane (Mx, yN or Mx, zN),

are developed based on formulating the static equilibrium of a typical Timoshenko beam,
assuming that the transverse displacement follows a cubic variation over the element length
(in the plane considered).
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When equations (A1) are substituted into equations (1), application of the usual "nite
element approximations leads to an element equation of motion in the matrix form (for each
plane):

M
d2q

dt2
#B

dq

dt
#Kq"0, (A2)

where the mass matrix, M, the damping matrix B and the sti!ness matrix K are de"ned by

M"P
L

0

[(m
p
#m

f
)NT

u
N

u
#(m

p
r2
p
#m

f
r2
f
)NThNh] dx,

B"P
t

0

m
f
<
0ANT

u

dN
u

dx
!N

u

dNT
u

dx Bdx, (A3)

K"P
L

0
AEI

p

dNTh
dx

dNh
dx

#kGA
p
NT
(
N
(
!m

f
<2

dNT
u

dx

dN
u

dx
!m

f

d<

dt
(¸!x)

dNT
u

dx

dN
u

dx Bdx.

The global 3-D element matrices are then readily written by the superposition of the #exural
matrices (in the Mx, yN and Mx, zN planes) and the axial and torsional matrices for a standard
beam (in the My, zN plane). The resulting matrices are given by the following:
mass matrix:

M"

M
3

0 m
11

0 0 m
11

0 0 0 M
a

0 0 !m
21

0 m
22

Symmetric
0 m

21
0 0 0 m

22
M

6
0 0 0 0 0 M

3
0 m

31
0 0 0 m

32
0 m

33
0 0 m

31
0 !m

32
0 0 0 m

33
0 0 0 M

b
0 0 0 0 0 M

a
0 0 m

41
0 m

42
0 0 0 m

43
0 m

44
0 !m

41
0 0 0 m

42
0 !m

43
0 0 0 m

44

;

(A4a)
damping matrix:

B"

0
0 0
0 0 0
0 0 0 0
0 0 !b

21
0 0 Anti-symmetric

0 b
21

0 0 0 0
0 0 0 0 0 0 0
0 b

31
0 0 0 b

32
0 0

0 0 b
31

0 !b
32

0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 !b

41
0 b

42
0 0 0 !b

43
0 0

0 b
41

0 0 0 b
42

0 b
43

0 0 0 0

;

(A4b)
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sti!ness matrix:

K"

K
a

0 k
11

0 0 k
11

0 0 0 K
t

0 0 !k
21

0 k
22

Symmetric
0 k

21
0 0 0 k

22
!K

a
0 0 0 0 0 K

a
0 !k

11
0 0 0 k

32
0 k

33
0 0 !k

11
0 !k

32
0 0 0 k

33
0 0 0 !K

t
0 0 0 0 0 K

t
0 0 !k

41
0 k

42
0 0 0 !k

43
0 k

44
0 k

41
0 0 0 k

42
0 k

43
0 0 0 k

44

;

(A4c)
where
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Note. When the above matrix elements were used in the transient FE computations, the
terms involving the #uid velocity (<"<

0
(1#a sinu

p
t)) were separated into steady and

time-dependent parts.

APPENDIX B: NOMENCLATURE

A
p

tube wall cross-sectional area
A

f
#uid cross-sectional area

B damping matrix
E tube modulus of elasticity
f
0

lower Coriolis frequency (for a meter not driven at "rst mode)
f
1

meter drive frequency
f
1,0

meter frequency with no #ow, i.e. for <"0.
f
2

meter Coriolis frequency (second mode for straight-tube meter driven at "rst mode; upper
Coriolis frequency for a meter not driven at "rst mode)

f
p

#ow pulsation frequency
G tube shear modulus
I
p

moment of inertia/length, of tube cross-section about the central axis
I
f

moment of inertia/length, of #uid about the central axis
q vector of nodal displacements and rotations
J
p

tube torsional moment of inertia"2I
p

k Timoshenko shear coe$cient, dependent on shape of tube
cross-section (k"0)5 for circular cross-section tube)

K sti!ness matrix
¸ length of the straight-tube meter
mR

f
#uid mass #ow rate"o

f
A

f
<

m
p

mass of tube per length"o
p
A

p
m

f
mass of #uid per length of tube"o

f
A

f
M mass matrix
r
p tube radius of gyration"JI

p
/A

p
r
f #uid radius of gyration"JI

f
/A

f
t time
¹
p

#ow velocity pulsation period
u transverse displacement"u (x, t)
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< #uid velocity
<
0

mean #uid velocity
x distance along tube element axis
a pulsation factor ((1)
c
1

meter "rst mode circular frequency"2n f
1c

2
meter Coriolis circular frequency"2n f

2Dt analysis time step
Dt

s
time shift between sensor signals

Dt
p
#uid velocity sampling time interval

h #exural rotation"h (x, t)
o
p

tube density
o
f

#uid density
/ shear strain " /(x,t)"Lu/Lx!h
u

p
pulsation circular frequency"2n f

p
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